Early detection of sudden cardiac death using Poincaré plots and recurrence plot-based features from HRV signals
نویسندگان
چکیده
In this paper we present a method to predict sudden cardiac death (SCD) based on the heart rate variability (HRV) signal and recurrence plots and Poincaré plot-extracted features. This work is a challenge since it is aimed to devise a method to predict SCD 5 min before its onset. The method consists of four steps: preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram signal and then the HRV signal is extracted. In the second step, the recurrence plot of the HRV signal and Poincaré plot-extracted features are obtained. Four features from the recurrence plot and three features from the Poincaré plot are extracted. The features are recurrence rate, determinism, entropy and averaged diagonal line length, and SD1, SD2, and SD1/SD2. In the next step, these features are reduced to one feature by the linear discriminant analysis technique. Finally, K-nearest neighbor and support vector machine-based classifiers are used to classify the HRV signals. We use two databases, the MIT/BIH Sudden Cardiac Death Database and PhysioBank Normal Sinus Rhythm Database. We manage to predict SCD occurrence 5 min before the SCD with accuracy of over 92%.
منابع مشابه
سنجش استعداد ابتلا به فیبریلاسیون دهلیزی با استفاده از تحلیلهای غیر خطی سیگنال الکتروکاردیوگرام
Atrial Fibrillation is a supra ventricular tachyarrhythmia, which is characterized by the deterioration of atrial mechanical function and aberrant. It has become a social and economic problem because a large percentage of the world population suffering from this disease. The early diagnosis of this fatal cardiac Arrhythmia can be prevented and managed it. In this study, we used non-invasive met...
متن کاملA Novel Approach to Predict Sudden Cardiac Death (SCD) Using Nonlinear and Time-Frequency Analyses from HRV Signals
Investigations show that millions of people all around the world die as the result of sudden cardiac death (SCD). These deaths can be reduced by using medical equipment, such as defibrillators, after detection. We need to propose suitable ways to assist doctors to predict sudden cardiac death with a high level of accuracy. To do this, Linear, Time-Frequency (TF) and Nonlinear features have been...
متن کاملRecurrence Plot Based Damage Detection Method by Integrating Control Chart
Because of the importance of damage detection in manufacturing systems and other areas, many fault detection methods have been developed that are based on a vibration signal. Little work, however, has been reported in the literature on using a recurrence plot method to analyze the vibration signal for damage detection. In this paper, we develop a recurrence plot based fault detection method by ...
متن کاملLinear and nonlinear analysis of normal and CAD-affected heart rate signals
Coronary artery disease (CAD) is one of the dangerous cardiac disease, often may lead to sudden cardiac death. It is difficult to diagnose CAD by manual inspection of electrocardiogram (ECG) signals. To automate this detection task, in this study, we extracted the heart rate (HR) from the ECG signals and used them as base signal for further analysis. We then analyzed the HR signals of both norm...
متن کاملComputational Algorithms Underlying the Time-Based Detection of Sudden Cardiac Arrest via Electrocardiographic Markers
Early detection of sudden cardiac arrest (SCA) is critical to prevent serious repercussion such as irreversible neurological damage and death. Currently, the most effective method involves analyzing electrocardiogram (ECG) features obtained during ventricular fibrillation. In this study, data from 10 normal patients and 10 SCA patients obtained from Physiobank were used to statistically compare...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017